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Heat pulse scattering at rough surfaces: reflection
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‡ Centre for Microelectronic Systems, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
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Abstract. We have modelled the scattering of heat pulses from rough surfaces, as observed
in reflection experiments. The effect of long-range irregularities was calculated in the eikonal
approximation. For diffusive scattering from short-range irregularity, an analytic expression was
obtained which is valid in the most common experimental arrangements. The model was used
to interpret data obtained in heat pulse experiments on buried interfaces in silicon.

1. Introduction

Investigating the scattering of heat pulses on a nanosecond time-scale is a valuable
means of studying crystal surfaces and characterizing interface quality of semiconductor
microstructures [1]. Many experiments have been carried out, particularly on single crystals
of sapphire and silicon, but the interpretations have been almost totally qualitative [2–
6]. Both reflection and transmission geometries have been used; in the present paper
we limit discussion to reflection only. The technique is very sensitive because the
high-frequency phonons typically have wavelengths comparable to the scale of surface
irregularity. However, the general theory of such scattering over the full frequency range
of phonons comprising a typical heat pulse is extremely complex. Nakayama [7, 8] worked
out the scattering cross-section in the limit where the phonon wavelength is much greater
than the surface roughness scale. He showed that the process is essentially one of Rayleigh-
type scattering following anω4-dependence. In the present work we describe calculations
carried out for phonons for which the above condition is not satisfied. We model the
scattering for phonons with wavelengths comparable to the scale of surface irregularity as
an extension of diffusive scattering theory, obtaining an analytic expression which is valid
in the most common situations. For phonons with wavelengths shorter than the roughness
scale an eikonal approximation is used, in which specular reflection from local mirror spots
is shown to be important. Finally we compare our calculations with previously published
results of experiments carried out on implanted silicon wafers, in which the scale of surface
irregularity could be changed by annealing the sample [9]. A preliminary account of this
work was published earlier [10]. We give considerable detail of the individual steps in the
theory since we believe that the approach and the results shown have wide applicability.

2. Formulation of the incident flux problem

The rough surface to be considered is shown schematically in figures 1 and 2. The plane
of the surface isx–y and the height in thez-direction from the mean plane is described
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2 A G Kozorezov et al

Figure 1. A section of the irregular surface (λ � Lc). n′ is the local normal vector,kj and
qν show incident and scattered (reflected) phonons.

Figure 2. Reflections from ideal (upper figure) and smooth irregular (lower figure) surfaces.α

gives the deviation of the local normal vectorn′ with respect toi3.

by z = h(x, y). Throughout, the incident phonon is described by the sufficesk, j and
the scattered phonon byq, ν. We assume〈h(x, y)〉 = 0, where the brackets stand for the
result of statistical averaging over all surface irregularities. We characterize the surface via
macroscopic and microscopic scalesLc andlc respectively assuminglc � Lc. We consider
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the case where the typical phonon wavelength falls in betweenlc andLc, i.e. lc ≤ λ � Lc.
Thus, if Lc → ∞ and λ � lc we arrive at the model used in [7, 8], while in the limit
lc → 0 but keepingLc finite we come to another extreme case of eikonal approximation.

We start from the eikonal approximation and incorporate the effects due to finitelc later.
Let the source of nonequilibrium phonons be

nkj (x, t) = n0
kj τG δ(x − xG) δ(t). (1)

Here n0
kj is a Planck distribution with generator temperatureTG, xG is the generator

coordinate andτG is the phonon pulse duration.
For simplicity we assume the crystal to be elastically isotropic and disregard phonon

scattering in the bulk. Let the generator and the detector lie in the (yz)-plane:

xG =
( 0

−y0

−z0

)
xD =

( 0
y0

−z0

)
.

The energy flux associated with the incident ballistic phonons is

S(x, t) =
∑
kj

Skj (x, t) =
∑
kj

n0
kj (TG)h̄ωkjcj δ(R − cj t)

= h̄

(
π

120

)
R

R3

(
kBTG

h̄

)4 ∑
j

1

c2
j

δ(R − cj t) (2)

whereR = x−xG, cj is the velocity for the(k, j)-mode, and ¯hω(k, j) is its energy. The
last step in (2) is the result of straightforward summation over wave vectorsk. Let x′ be
the scattering point at the surface andrj→ν(ϑ) be the coefficient of reflection from modej
to modeν for a given value of incidence angleϑ . Then, according to reflection laws we
may write for the flux incident atx′ at the angle2(

Sν(x
′, t) · n′

n′

)
= −R′ · n′

R′n′
h̄

4πR′2
π2

30

(
kBTG

h̄

)4 ∑
j

rj→ν(ϑ)

c2
j

δ(R′ − cj t). (3)

3. Scattered flux: general considerations

The kinetic equation for ballistic phonons(qν) moving away from the surface after reflection
is

∂Nqν

∂t
+ cν

∂Nqν

∂x
= 0. (4)

Rewriting (4) in integral form we can relate the phonon distribution in the bulk at the
arbitrary pointx and instant of timet to the phonon flux at the surface in the preceding
instants of time:

Nqν(x, t) = −
∫ t

−∞
dt ′

∫
dx′ δ[x − x′ − cν(t − t ′)] δ[z′ − h(x ′, y ′)]

×
∑
kj

r(kj → qν)n0
kj (TG)cj

R′ · n′

R′ δ(R′ − cj t
′). (5)

In (5) we introduced the new entityr(kj → qν) to describe transformation of the incident
phononkj into modeqν as a result of either reflection or scattering from the surface. At
this stage we incorporate the effect of diffuse scattering (lc � λ) and definew(kj → qν)

according to(n · Sqν) = −w(kj → qν)(n · Skj ). Thus w(kj → qν) stands for the
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probability of elastic conversion at the surface from thekj - into theqν-mode, andSqν and
Skj are corresponding phonon fluxes. Now the expression for the outward-going phonon
flux becomes

(n(x) · cν)Nqν(x, t) = −[rj→ν(ϑ)(1 − w(k, j)) + w(kj → qν)]
Skj · n

h̄ωkj

. (6)

If we define

r(kj → qν) ≡ rj→ν(ϑ)[1 − w(k, j)] + w(kj → qν)

where

w(k, j) ≡
∑
q′ν ′

w(kj → q′ν ′)

is the total probability for a phonon of thekj -mode to be diffusively scattered into all
possible phonon modes, then we again arrive at (5) with the effects of diffuse scattering by
short-scale irregularities properly accounted for. Note that∑

q ′ν ′
r(kj → q′ν ′) = 1

as it should for a surface–vacuum interface.
We introduceI spec(t) andI diff (t) in order to describe the different components of the

total flux:

I spec(t) = −h̄
∑
qjν

〈
c2
ν(q · i3)

∫ t

−∞
dt ′

∫
dx′ δ[xD − x′ − cν(t − t ′)] δ[z′ − h(x ′, y ′)]

×n0
qν(TG)cj

((x′ − xG) · n′)
|x′ − xG| δ

(
x′ − xG − cj

q − αqn′

|q − αqn′| t
′
)

×rj→ν(ϑ)[1 − w(q − αqn′, j)]

〉
(7)

I diff (t) = −h̄
∑
kj,qν

〈
w(kj → qν)c2

ν(q · i3)

∫ t

−∞
dt ′

∫
dx′ δ[xD − x′ − cν(t − t ′)]

×δ[z′ − h(x ′, y ′)] n0
kj (TG)cj

R′ · n′

R′ δ(R′ − cj t
′)
〉
. (8)

We discuss first the specular part of the reflected signal. For a fixedqν-mode only those
kj which are related toqν by local reflection laws at each pointx contribute to the flux
(n · cν)Nqν(x, t). We thus demand: (1) that all three vectorsk, q, n lie in the same plane;
(2) tangential components of wave vectors for incident and reflected waves are equal if
evaluated with respect to local mirror plane; and (3) no frequency change occurs. The
conditions (1)–(3) mean thatk = q − αqn with

α = q · n

qn2
− 1

n

√(
q · n

qn

)2

+
(

cν

cj

)2

− 1

andq · n < 0.
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4. The eikonal approximation: the specular signal

The statistical averaging over the microscopic irregularities with the scalelc is assumed to
have been already performed. Thus,w(kj → qν) coincides with corresponding formulas
from [7, 8]. Now we average the result over the macroscopic irregularities. We perform a
statistical averaging of (7) while keeping only the zeroth-order approximation forI diff (t),
that is, in the limitLc → ∞. Integration of (7) over dx′ with a Taylor series expansion of
the δ-function argument yields

I spec(t) = −h̄

∫
dm

∑
qjν

2(−qz)cνn
0
qν(TG)qrj→ν [1 − w(ωqν)]

z0 + 2y0myqz/q · m

t + (1/cν)(q/qz)z0

×δ

[
2y0i2 + q

qz

z0 − c2
j

cν

q − α(m)qm

q

(
t + 1

cν

q

qz

z0

)]
〈δ(m − n)〉 (9)

where in order to perform the statistical averaging we introduced the identity∫
dm δ(m − n) = 1.

We also neglected small terms of the order of max|h| � z0, thus disregarding pulse
broadening due to small extra paths≈max |h| with respect to the much stronger effect
of varying local normals and change in the incidence angles. Finally we took the total
probability for diffuse scattering at an arbitrary element of the surface as being dependent on
phonon energy only, ignoring any possible angular dependence. If we letψ(r) = 〈h(r)h(0)〉
be the pair correlation function for smooth surface irregularities, then

〈δ(m − n)〉 = 1

(2π)3

∫
dQ exp[iQ · m]〈exp[iQ · n]〉 = δ(mz − 1)

2πχ(0)
exp

[
−m2

x + m2
y

2χ(0)

]
where

χ(0) = −1

2

∂2ψ(r)

∂r2
i

∣∣∣∣
r=0

.

The evaluation of〈exp[iQ · n]〉 and subsequent integration over dQ is straightforward.
Substitution of this result into (9) with slight rearrangement of theδ-function term yields

I spec(t) = − h̄

(2π)4

1

z0

1

χ(0)

∫
dm δ(mz − 1) exp

[
−m2

x + m2
y

2χ(0)

]

×
∑
qjν

2(−qz)q
c2
ν

c2
j

n0
qν(TG)rj→ν [1 − w(ωqν)]

1

|α(m)|

×z0 + 2y0myqz/q · m

t + (1/cν)(q/qz)z0
δ

(
mx − qx

qz

)
δ

[
2y0 − z0

α(m)q

qz − α(m)q

(
my − qy

qz

)]
×δ

[
t + 1

cν

q

qz

z0 − z0
cν

c2
j

q

qz − α(m)q

]
. (10)

This is a general result. It does not depend on particular assumptions about surface roughness
other than max|h| � z0. It is obvious that the order of magnitude ofχ(0) is 〈h2〉/L2

c . In
what follows we assume thatχ(0) � 1. Therefore we put

m →
( 0

0
1

)
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in all pre-exponential factors excluding the arguments ofδ-functions, where we use Taylor
series expansions and keep linear terms inmx andmy. Now (10) reduces to

I spec(t) = − h̄

(2π)4

1

z0

1

χ(0)

∫
dm δ(mz − 1) exp

[
−m2

x + m2
y

2χ(0)

] ∑
qjν

2(−qz)q
c2
ν

c2
j

n0
qν(TG)

×rj→ν [1 − w(ωqν)]
1

|α0|
z0

t + (1/cν)(q/qz)z0
δ

(
mx − qx

qz

)
×δ

(
2y0 + z0

α0q

qz − α0q

qy

qz

− 2y0f
νj

0 my

)
×δ

(
t + 1

cν

q

qz

z0 − z0
cν

c2
j

q

qz − α0q
+ t

νj

0 my

)
. (11)

Hereα0 ≡ α(m = i3) corresponds to the ideal surface, whilst

f
νj

0 = − q0
yq

0
z

(q0
z − α0q0)2

− q0
z

q0
y

t
νj

0 = −2y0
cν

c2
j

q0q0
z

(q0
z − α0q0)2

with q0
y , q

0
z andq0 corresponding to the wave vectors for contributing phonons.

Despite its complexity (11) has simple meaning. Theδ-functions in (11) give the
selection of all possible paths withj -to-ν mode conversion at the surface (the first and
secondδ-functions) and determine the time taken to travel from generator to detector along
the chosen trajectory (the thirdδ-function). The secondδ-function sets the angles for
incident and reflected phonons and after simple algebra may be written in the form

1

z0

1

|Aνj

0 (ϑ0
ν )|

δ[ϑν − ϑ0
ν + ξ

νj

0 (ϑ0
ν )my ]

whereA
νj

0 (ϑ0
ν ) and ξ

νj

0 (ϑ0
ν ) are dimensionless numerical factors of the order of 1 which

are functions of the angleϑ0
ν , the reflection angle from the ideal surface (figure 2). The

argument of the thirdδ-function can be rewritten in the form

t − z0

cj cosϑj

− z0

cν cosϑν

+ t
νj

0 my or t − z0

cj cosϑ0
j

− z0

cν cosϑ0
ν

+ τ
νj

0 my

where

τ
νj

0 = t
νj

0 − z0

cj

sinϑ0
j

cos2 ϑ0
j

(ϑj − ϑ0
j ) − z0

cν

sinϑ0
ν

cos2 ϑ0
ν

(ϑ − ϑ0
ν ).

The identification of the second term as the timet0
j taken by the phonon of thekj -mode

to travel from the generator to the part of the surface where it is reflected to theqν-mode
is straightforward. The third term is the timet0

ν taken by theqν-phonon to travel from
the point of its creation to the detector, while the last term accounts for the local normal
variations. With these remarks formula (11) can be easily integrated. We give only the
final result. In order to discuss the difference between the specular signals reflected from
the ideal and smooth irregular surface we give both results:

Iideal(t) =
∑
νj

Aνj δ(t − t0
νj ) (12)

wheret0
νj = t0

ν + t0
j andAνj give the total detected intensity for theνj -pulse. Then

I spec(t) =
∑
νj

ϕjAνj

1√
2πχ(0)

1

τ
νj

0

exp

[
−

(
t − t0

νj

τ
νj

0

)2 1

2χ(0)

]
(13)
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where

ϕj =
(∫ ∞

0
dω ω3n0(ω)[1 − w(ω, j)]

)/(∫ ∞

0
dω ω3n0(ω)

)
is the numerical factor accounting for the reduction in specular component due to diffuse
scattering from short-scale irregularities. Inspection of (13) shows that the phonon pulse
half-width is given by

0νj = 2
√

2χ(0)τ
νj

0 ≈
√

〈h2〉
Lc

t0
νj . (14)

Thus it scales both withτ νj

0 which is equal to the time of flight ofj -to-ν mode conversion as
a result of reflection at the surface, and also with the pair correlation function of the surface
roughness. It is also seen to be independent of the wavelength. This is not surprising,
since we kept only zeroth-order approximation terms forλ/Lc � 1 and in this limit pulse
broadening is a purely geometrical effect, determined by reflection from a distribution of
local mirrors.

5. Diffuse scattering

Now we discuss the diffuse component of the signal. Keeping only zeroth-order terms in
long-range surface roughness in (8) and integrating over dx′, dt ′ we arrive at

I diff (t) = − h̄

z2
0

∑
kj ;qν

2(kz)2(−qz)w(kj → qν)cνqq2
z n

0
kj(TG) δ

(
qx − qz

kx

kz

)
×δ

(
qy − qz

ky

kz

+ 2qz

y0

z0

)
δ

(
t + z0

cν

q

qz

− z0

cj

k

kz

)
. (15)

Integrating over dq in (15) with the use of elastic nature of scattering from surface roughness
and using the set of variablesk, ρ andα rather than spherical coordinates when performing
integration over dk (ρ is the vector in thex–y-plane, so thatk = −xG + ρ, andα is the
angle betweenρ and they axis) we arrive at

I diff (t) = z2
0

V

(2π)3

∑
kj

∫ ∞

0
dk k2h̄ωn0

kj (TG)

×
∫ ∞

0
dρ

∫ 2π

0
dα w̃

(
k

−xG + ρ

| − xG + ρ| , j → cj

cν

k
xD − ρ

|xD − ρ| , ν
)

× ρ

[(z2
0 + ρ2 + y2

0)2 − 4ρ2y2
0 cos2 α]3/2

×δ

(
t − 1

cj

√
z2

0 + ρ2 + y2
0 + 2ρy0 cosα

− 1

cν

√
z2

0 + ρ2 + y2
0 − 2ρy0 cosα

)
. (16)

Here we introduced the new functioñw which is given by straightforward integration over
dq. This expression for the diffusive signal may be easily analysed for a number of different
cases.

First we discuss the signal shape at distant times exceeding the time of flight for the
specular signal:cj (ν)t � 2y0. Taking ρ → ∞ in (16), we obtain

I diff (t) = z2
0

(2π)2

∑
ν,j

∫ ∞

0
dk k2h̄ωn0

kj (TG)w̃back
jν

(
z0

t

(
1

cj
+ 1

cν

))
1

t5

(
1

cj
+ 1

cν

)4

. (17)
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The expression (17) contains the probability for pure back-scattering of incident phonons
with the conversion into different modes. Phonons in the tail of the diffusive signal arriving
at the detector are scattered from spots on the surface separated from the origin by much
more than the distance from the generator to the detector and, hence, returned along the same
path. We keep the dependence of the back-scattering probability on the incident phonon
wave vector and assume that it depends only upon the cosine of the incidence angle. Using
Nakayama’s approach [7, 8] we may calculatew̃back

jν for different pairs of modes.
This reproduces the shape of signal obtained by Nakayama forcj (ν)t → ∞. However,

for y0 6= 0 and t ≥ t0
jν the shape of the signal will be very different. To illustrate this,

we consider only the case where incident and scattered phonons possess the same velocity:
cj = cν = c, i.e both are transverse. Now the general formula (16) can be significantly
simplified. The argument of theδ-function in (16) then equals zero when

ρ± = ±ct

2

√
c2t2 − 4(z2

0 + y2
0)

c2t2 − 4y2
0 cos2 α

. (18)

Integration over dρ is thus easily performed to give

I diff
cj =cν=c(t) ∝ 1

t

∫ 2π

0
dα

1

1 − 4y2
0 cos2 α/c2t2

1

(ρ2+ + z2
0 + y2

0)2 − 4ρ2+y2
0 cos2 α

. (19)

Substituting (18) into (19) and integrating over dα we obtain finally

I diff
cj =cν=c(t) ∝ 1

t5

t4 + 1
2ζ 2t2

0(t2 − t2
0)

t4 − 2ζ 2t2
0(t2 − 1

2t2
0)

. (20)

Here

t0 =
2
√

(y2
0 + z2

0)

c

is the time of flight andζ is the geometrical factor
y0√

z2
0 + y2

0

.

To derive (20) we assumed that the rate of scattering from the surface is the same to all
final states regardless of the direction of propagation. The use of Nakayama’s differential
cross-sections obviously changes this result [7, 8].

It is evident from (20) that the second factor which accounts for the finite spatial
separation between the generator and detector significantly modifies the shape of the signal
near the maximum, making the signal fall after the maximum much faster than for the
geometry of back-scattering.

It is useful at this point to discuss the power dependences for diffuse and specular signals.
If we neglect diffuse scattering, then the specular component scales with power dissipated
in the generatorP . At low generator temperatures, thus,Ispec(t) ∝ T 4

G. Diffuse scattering
causes the dependence onTG to be slower (due to the factorϕj in (13)). The diffuse signal
(16) is obviously characterized by a faster rise withP or TG. In the simplest case of low
power levels (low temperatures) this immediately givesP 2 (or T 8

G), arising fromT 4
G due

to lattice energy, and an additionalT 4
G to the scattering probabilitỹw ∝ ω4 ∝ T 4

G. This
assumption is valid in the limit̄λph � lc. As was mentioned above, the differential scattering
cross-sectioñwj→ν is related toσ(J → J ′) calculated by Nakayama, and therefore for each
pair of modes we may take corresponding formulas from [7, 8]. We now discuss how the
results are modified if we assume the irregular surface to be Gaussian with a finite correlation
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lengthlc. Calculation of the factor〈|1ρ(k′ + q′)|2〉 [7, 8], defining the strength of coupling
between incident and scattered modes yields

〈|1ρ(k′ + q′)|2〉 = πρ2
0l2

c 〈h2〉 exp

[
− (k′ + q′)2l2

c

4

]
. (21)

Here 1ρ(r) is a random part of the crystal density at the irregular surface, andk′ and
q′ are 2D wave vectors—projections of 3D wave vectors for incident and scattered waves
on the surface plane. All the results in [7, 8] were obtained for the case of white-noise
irregularities, i.e. ψ(r) = constant× δ(r). For this case〈|1ρ(k′ + q′)|2〉 = constant. A
finite length of correlation, thus, adds an exponential factor and modifies the pre-exponential
constant, expressing it in terms of the correlation length and mean squared height of the
surface irregularities. Therefore, we may keep Nakayama’s differential cross-sections in
the further analysis, simply multiplying them by the exponential factor in (21). Clearly, for
long phonon wavelengths14|k′ + q′|lc � 1, so the exponential factor is not significant, and
this is exactly the limit of applicability for Nakayama’s theory. If, however,λ̄ph becomes
comparable tolc, then the exponential factor in (21) plays the role of an effective cut-off,
separating the spectral ranges of long and short wavelengths for phonons of the heat pulse.

We now go back to the expression (16), add the exponential factor, and again integrate
over dρ for the most important experimental casecj = cν = c. Again with ρ+ from (18)
we obtain

I diff (t) = z2
0

V

(2π)3

1

t

∫ ∞

0
dk k2h̄ωn0

kj(TG)

∫ 2π

0
dα

w̃(k, ρ+, α)

z+z−(1 − (4y2
0/c2t2) cos2 α)

× exp

[
−β

(
1 − z2

0(ρ
2
+ + y2

0 + z2
0)

z+z−
+ y2

0 − ρ2
+√

z+z−

)]
(22)

wherez± = ρ2
++z2

0 +y2
0 ±2ρ+y0 cosα andβ = ω2l2

c /4c2. First we note that in the geometry
of back-scattering (y0 = 0) the expression in square brackets in the exponent goes to zero.
For y0 6= 0 it is always positive and varies slightly withα, the corresponding parameter
being

1

2

y2
0

y2
0 + z2

0

cos2 α

(
t0

t

)2

.

We may analyse the temporal and temperature behaviour of the diffuse signal
approximately by taking correction terms with cosα equal to zero. Then

I diff (t) ∝ T 8

t5

∫ ∞

0
dz

z7

expz − 1
exp(−γ 2z2) (23)

where

γ = lc

c

kBTG

h̄

y0√
2(y2

0 + z2
0)

t0

t
= TG

T ∗
t0

t
.

Here

T ∗ ≡ ch̄

kBlc

2
√

(y2
0 + z2

0)

y0
.

For γ � 1 we haveI diff (t, TG) ∝ T 8
Gt−5. For γ � 1 we haveI diff (t, TG) →

T 8
Gt−5γ −7 ∝ T 1

Gt2. If γ (t0) � 1, thenγ (t) � 1 for t ≥ t0 and I diff (t) follows a 1/t5-
law. However, ifγ (t0) � 1, then the signal first starts to rise, and then saturates at around
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Figure 3. The behaviour of the diffusively scattered flux,I diff , as a function of the arrival time
for various values of the generator temperature,TG.

tm = t0TG/T ∗, reverses and asymptotically approaches 1/t5. Schematically this is illustrated
in figure 3. As follows from the results of this analysis, ifTG > T ∗ the signal peak shifts
from the time-of-flight position and broadens. Note that ifTG < T ∗ the peak half-width (or
the related quantityτ60%—the time taken for the signal to fall by 60% from its maximum
value)—are independent of the power (temperature). WhenTG approachesT ∗, the signal
half-width andτ60% (although to calculateτ60% one now has to take into account the power-
dependent position of the signal peak) acquire power dependence. Both the half-width and
τ60% are monotonically rising functions of power (temperature).

Figure 4. Experimental data forτ60% for samples
(a) unimplanted, (b) implanted, and (c) implanted and
annealed.

Figure 5. The observed magnitude of the TT peak as
a function of generator power for the same conditions
as in figure 4.
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6. Discussion: comparison with experiment

We have obtained a general expression for the diffusive scattering peak as a function of
arrival time, t , and heat pulse generator temperature,TG. The result is expressed in terms
of the dimensionless parameter,γ , itself a function of the ballistic time of flight of the
specularly scattered phonons, and of the roughness scale of the surface. We were able to
compare this model with the previous results of heat pulse experiments on an implanted
silicon wafer in which the short-range correlation length,lc, could be changed [9]. An
amorphous layer was first produced below the surface of the wafer by ion bombardment.
The interface between the amorphous and the crystalline regions is known to have two
distinct roughness scales, one of long range produced by the statistical nature of the
bombardment process, and one of short range relating to dislocations [11]. Careful annealing
at an appropriate temperature can remove the dislocations without affecting the long-
range irregularity. Figure 4 shows the variation as a function of the heat pulse generator
temperature,TG, of τ60%, the time taken for the observed TA→TA scattering peak to fall by
60% of its maximum value under the conditions (a) before ion implantation with diffusive
scattering taking place from the true surface of the crystal, (b) after implantation when both
long-range order,Lc, and short-range order,lc, were present, and (c) after annealing which
increasedlc. Finally figure 5 shows the power dependence of the TA→TA peak for the
same three conditions.

Figure 6. The detected phonon signal is the superposition of the specular,I spec, and diffusive,
I diff , signals. The timeτ60% is the measured time interval after the specular arrival time,t0,
which the signal falls by 60% of its peak value.

We consider first the pre-implanted data. We assume that the surface is polished to such
a high grade that over the whole range of generator power the dominant phonon wavelength
is still greater thanlc. We can describe the signal at the bolometer as the superposition of
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Figure 7. An experimental trace for comparison with the idealized model of figure 6. TT refers
to transverse–transverse scattering, and TL to transverse–longitudinal scattering.

specular and diffusive peaks (figure 6), so the total signal may be written as

I (t) = I spec(TG) + I diff (TG)

(
t0

t

)5

= I spec(TG)

[
1 + ζ(TG)

(
t0

t

)5
]

(24)

whereζ(TG) is the ratio of diffuse to specular maxima and we also assumed the specular
signal to be narrow and disregarded its temporal dependence arising from that. For
comparison, the experimentally observed signal is shown in figure 7. TT refers to TA→TA
scattering, and TL to the mode-converted signal. Any LL scattering is insignificantly small.

Using (24) we arrive at

τ60% = t0

[
1.20

(
ζ(TG)

1 + ζ(TG)

)0.2

− 1

]
. (25)

Assumingλ̄ph > lc we must takeζ(TG) ∝ T 4
G or ζ(P ) ∝ P . Thusζ(P ) = ζ0P/P0 with ζ0

to be estimated at the lowest power level from experimental data. For a polished sample
prior to implantation (curve (a) in figure 5) this gaveζ0

∼= 2.3 that is, the diffuse signal
at its maximum exceeds the specular signal at the lowest power ofP = 3 × 10−4 W by a
factor of 2.3. At the power levelP ′ = 3 × 10−3 W we will have τ ′

60%
∼= 50 ns in close

agreement with experimental data (figure 4, (a)). It is worth noting that the TT peak power
dependence also finds a reasonable explanation if we take into account the fact that at low
power levelsP ≥ P0 we haveI diff (P ) ∝ P 2 and I diff ≥ I spec. The experimental slope
in the range 2× 10−4 ≤ P ≤ 8 × 10−4 W is ≈P 1.7 with the exponent 1.7 being close
to but less than 2 as it should be in the absence of diffusive scattering. The change of
slope for higherP is an indication that the diffuse scattering cross-section does not follow
a Rayleigh law at higher power levels, when a noticeable fraction of phonon energy is in
the short-wavelength part of the spectrum approaching the lateral scalelc of the polished
surface.
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After implantation the shape of the TT signal and its half-width change dramatically,
reflecting the fact that now phonon scattering takes place not at the crystal surface, but
at the irregular interface between damaged and crystalline regions. Both the shape of the
observed signal and the TT amplitude variation with phonon generator power show only a
small amount of specular reflection to be present at low power levels. This is obviously due
to the diffuse scattering being much stronger than for the unimplanted sample. Presumably,
for the implanted sample the spectrum of density irregularities in a damaged layer is broad,
and so at a particular phonon power level there are many irregularities present with scales
comparable to all phonon wavelengths. Then after implantation even at the lowest power
level we are close to the top of the family of curves depicted in figure 3. On this basis we
may interpret the experimental results of figure 5, (b) and (c). Firstly, we find experimental
confirmation for our assumption from data in figure 5—see (b), showing the variation with
the phonon generator power of the TT amplitude for the implanted sample. At low power
levels the slope is given byP 0.75 in agreement with our initial assumption, since we expect
the dependence to be slower than∝P if we stay close toT ∗. The rise of the phonon
generator power brings about a weakening of diffuse scattering which should eventually
saturate with power. The specular component which is still power dependent then emerges
above the diffuse signal, thus providing a gradual change of slope towards the dependence
∝P , as indeed is seen in figure 5—see (b). The dependence ofτ60% on P is also consistent
with our assumption. Firstly,τ60% rises with power in agreement with our analysis when the
diffuse signal dominates. However, this behaviour reverses when the specular component
‘overtakes’ the diffuse component, and more phonons form the specular signal which is
characterized by a half-width due to the angular spread of local normals in the eikonal
regime. If we anneal the sample, then we remove most of the short-range irregularities
leaving, however, longer-scale irregularities. Therefore, theτ60% versusP curve saturates
and reverses at lower phonon generator powers. Almost throughout the measured range of
phonon generator powers the slope of the signal versus phonon generator power is slightly
higher than 1 (approximately 1.2–1.3), except for at the very beginning (low power levels)
for sample (c) where there appears a slight indication for a slope below unity, which would
be consistent withτ60% increasing withP . Finally, we note that the exponent 1.2–1.3 seen
for the annealed sample (curve (c)) and the implanted sample without annealing (curve (b))
can be understood as a contribution arising from the power variation of the numerical factor
ϕj in (13), which aboveT ∗ obviously decreases, while diffuse scattering weakens, thus
making the overall dependence slightly faster thanP 1.0.

Thus we find that the data observed for this novel series of experiments are in general
agreement with our analytical expressions for both specular and diffuse scattering from
rough surfaces with both long- and short-range irregular components. For Gaussian irregular
surfaces with a finite correlation length for short-scale irregularitieslc we have shown that
signal half-widths turn out to be wavelength dependent and experimental data confirm this.
In contrast the dependences of the half-widths for the two signals were independent of
phonon wavelength in the white-noise model for short-range irregularities. In this model,
however, an observable half-width variation with phonon generator power may be found
due to interplay between different power dependencies of specular and diffusive signal
amplitudes. We expect then a gradual change of half-width from one power-independent
value to another, corresponding to either broadening or narrowing of the peak.

In summary, we have considered the scattering of heat pulses from rough surfaces
and interfaces modelled in terms of two extreme length cases. We derived, for the first
time, analytic expressions which described both diffusive and specular components of a
scattered heat pulse consisting of phonons of all wavelengths, not just those in long- or short-
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wavelength limits. Our expressions describe satisfactorily the main experimental features
of heat pulse scattering in which the length scale can be varied.
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